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We solve exactly the problem of dynamic hysteresis for a finite one-dimensional Ising model at low tem-
perature. We find that the area of the hysteresis loop, as the field is varied periodically, scales as the square root
of the field frequency for a large range of frequencies. Below a critical frequency there is a correction to the
scaling law, resulting in a linear relationship between hysteresis area and frequency. The one-dimensional Ising
model provides a simplified description of switchlike behavior in allosteric proteins, such as hemoglobin. Thus
our analysis predicts the switching dynamics of allosteric proteins when they are exposed to a ligand concen-
tration which changes with time. Many allosteric proteins bind a regulator that is maintained at a nonequilib-
rium concentration by active signal transduction processes. In the light of our analysis, we discuss to what
extent allosteric proteins can respond to changes in regulator concentration caused by an upstream signaling
event, while remaining insensitive to the intrinsic nonequilibrium fluctuations in regulator level which occur in
the absence of a signal.
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I. INTRODUCTION

Information processing in living cells is carried out by
networks of interacting proteins. The computational capacity
of such webs relies on certain network components acting as
logical switches, so that their interactions with other compo-
nents can be turned on and off. It has been suggested that
allosteric proteins, which can flip between active and inac-
tive conformations according to the concentration of regula-
tor ligands, form an important class of protein switches �1�.
Allostery has been extensively studied, and classic models
�2,3� describe a sigmoidal activity curve as a function of
ligand concentration, indicating that modest changes in the
steady-state level of a regulator can be sufficient to effect a
switch. The dynamics of switching, by contrast, has received
little theoretical attention. Yet it is important to understand
how allosteric proteins respond to changing conditions, in
order to establish the speed at which information can be pro-
cessed and to evaluate the robustness of switch states to in-
trinsic fluctuations in regulator concentration.

Many allosteric proteins, especially those that occur in
signal transduction pathways, respond to a regulator ligand
that is activated by a nonequilibrium process. The canonical
example is a regulator that is activated by phosphorylation
�4�. Phosphorylation is usually achieved by transferring a
phosphoryl group from an ATP molecule to the regulator.
The production of ATP costs energy and phosphorylated
regulators usually dephosphorylate spontaneously, so the
concentration of active regulators is far from equilibrium. In
order to understand how switches can robustly respond to
changes in regulator concentration while filtering out non-
equilibrium concentration fluctuations that may be large, we
must introduce a framework to describe the dynamics of a
protein switch.

The counterparts of protein switches in electronic devices
are flip-flops and memory bits, and it is in this context that

the dynamics of switching has previously been investigated.
When, for example, a magnetic field is varied from a nega-
tive to a positive value, there is a delay before a ferromag-
netic domain switches from its metastable negatively magne-
tized state to a globally stable positively magnetized state.
The length of the delay depends on the rate at which the field
increases. This phenomenon is known as dynamic hysteresis
�5�, and it occurs in addition to any static hysteresis the sys-
tem may possess.

The mean-field Ising model at a temperature below the
critical temperature is suitable for analyzing this situation.
Over a range of field values close to zero the magnetization
is double valued and, because stochastic fluctuations are ne-
glected, there is a static hysteresis in the system. When an
oscillating external field is applied, the way that the system
switches between negatively and positively magnetized
states can be analyzed by considering the dynamical re-
sponse to the change in the Landau free energy �6,7�. Forcing
the system at frequency � leads to the equation

ṁ = �km − m3� + A sin �t = − h�m� + A sin �t , �1�

where m is magnetization and h�m� is the applied field that
would give rise to magnetization m in the steady state. Dy-
namic hysteresis leads to an increase in the field value at
which switching occurs and to a corresponding increase in
the hysteresis area A from its static value A0. Jung et al. �6�
showed that close to the critical temperature, the additional
area scales with frequency according to A���−A0��2/3.

Conformational transitions in allosteric proteins can be
modeled using a one-dimensional nearest-neighbor Ising
model �8�. It is our aim to investigate dynamic hysteresis in
this situation. In contrast to the mean-field case, static hys-
teresis is absent in the one-dimensional �1D� Ising model: the
magnetization approaches a step function as T→0 �9�. Nev-
ertheless, dynamic hysteresis still occurs: when the field is
varied at a nonzero rate, the magnetization lags behind the
field �see Fig. 1�.*Electronic address: ig224@cam.ac.uk
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Analogously to Eq. �1�, the forced one-dimensional Ising
magnet for T→0 may be modeled by the differential equa-
tion

ṁ = − h�m� + A sin �t ,

m�h� = � 1, h � 0,

− 1, h � 0.
� �2�

This equation bears a resemblance to a class of nonlinear
ordinary differential equations of the form

ṁ = − m�m�a + A sin �t , �3�

for which dynamic hysteresis has been investigated by Gold-
sztein et al. �10�. The hysteresis area was found to scale as

A��� � ��a+2�/�2a+1�. �4�

Equation �2� corresponds to Eq. �3� in the limit a→�. We
therefore expect, from Eq. �4�, that in the one-dimensional
Ising model, the hysteresis area scales with the square root of
the driving frequency:

A��� � �1/2. �5�

Testing this prediction forms the basis of this paper. In Sec.
II we introduce the Ising model of allosteric proteins as a
motivation to investigate dynamic hysteresis for a finite one-
dimensional Ising model. In Secs. III and IV we determine
the hysteresis curve for the one-dimensional Ising model and
present numerical results. These show that the square-root
scaling law predicted by Eq. �5� is valid for a range of fre-
quencies, but breaks down below a critical frequency. In Sec.
V we discuss the implication of these results for allosteric
proteins.

II. ISING MODEL FOR ALLOSTERIC PROTEINS

An allosteric protein, or protein complex, is one in which
there are indirect interactions between two or more binding
sites �4�. The classic example is hemoglobin, which consists
of four subunits �or protomers�, each of which can bind an
oxygen molecule �11�. The binding of oxygen to one site
increases the affinity of oxygen for the other sites via a con-

formational change. This cooperativity leads to a sigmoidal
binding curve, which is essential for the function of the mol-
ecule.

The original model of cooperativity �2� stressed the re-
quirement of protomer symmetry for the proper function of
cooperative proteins. This allowed a simple calculation of
protein complex binding states, with the result that the coop-
erativity depended on only two parameters: the difference in
ligand affinity for the two protein conformations and the
relative free energies of the two conformations in the ab-
sence of ligand.

An especially important class of allosteric proteins is
made up of regulatory enzymes. The affinity of an allosteric
enzyme for its substrate is affected by whether or not a small
ligand molecule is bound at a different site on the protein.
This indirect interaction between distinct binding sites is re-
sponsible for the performance of the enzyme’s regulatory
function. Frequently, the activity of a protein complex may
be regulated by the binding of more than one regulatory
ligand. An example is the C-ring of the bacterial flagellar
motor, which contains a binding site for the regulator CheY-p
on each of about 30 copies of the protein FliM �8�. The
whole complex appears to change conformation at a charac-
teristic ligand concentration, causing the motor to switch
abruptly from counterclockwise to clockwise rotation �12�.
There are also examples of ion channels, motor proteins, and
proteases that may work in a similar way �13–15�. In many
of these examples, the protein complex is made up of a ring
of protomers.

It must be assumed that the indirect interactions between
binding sites in allosteric proteins are mediated by some kind
of conformational change of the protein, which is affected by
the presence or absence of the regulating ligand. Figure 2
shows a protein with two conformational states: active and
inactive. The protein can make rapid stochastic transitions
between the states, and the equilibrium probability of the two
states is determined by their relative free energies. The bind-
ing of a regulatory ligand stabilizes one of the states �here

FIG. 1. Dynamic hysteresis in the 1D Ising model. The dotted
line shows the magnetization 	s
 as a function of a static field h. If
the field is varied at a nonzero rate �arrows�, the magnetization lags
behind the field, causing a hysteresis loop.

FIG. 2. A receptor can exist in two conformations: inactive
�white� and active �black�. When no ligand is bound, the energy of
the inactive state is lower than that of the active state by EA. Con-
versely, ligand binding stabilizes the inactive state, relative to the
active state, by EA. Ligand concentration c is assumed to be pro-
portional to exp�EL /kBT� �16�.
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assumed to be the active state�, enhancing its likelihood of
occurrence.

The Hamiltonian for an ensemble of isolated, ligand-
regulated proteins is

H = �
i=1

N

− EABi�c,si�si, �6�

where si=1 �−1� denotes that protein i is active �inactive�,
Bi=1 �−1� corresponds to a liganded �unliganded� protein,
and EA is the energy difference between the active and inac-
tive conformation. This is equivalent to the Hamiltonian of a
paramagnet in a random �-distributed field. The probability
that ligand is bound to a protein clearly depends on the con-
centration c of ligands in solution. Less evidently, it also
depends on the activity si of the protein. This is because
thermodynamic consistency implies that ligand binds more
strongly to the state which it stabilizes, leading to a coupling
between the binding state and conformation. Thus the prob-
ability distribution of Bi depends on both c and si. In the
magnetic analogy, the mean field varies with the concentra-
tion, and additionally there is coupling between spin and
field.

The cooperative allostery of an oligomeric protein com-
plex is modeled by introducing a coupling energy between
neighboring protomers, making it favorable for them to be in
the same conformation �8,16,17�. Many cooperative protein
complexes, such as the C-ring, are rotationally symmetric
and composed of identical elements �18�. Therefore we make
the assumption that the coupling energy is not dependent on
the position of the protomer in the ring. Furthermore, it is
assumed that the coupling energy depends only on the con-
formation of the protomer with respect to its neighbors. This
is because a sharp switchlike activity curve, as observed for
the C-ring, is, in general, not observed if the coupling energy
is a function of both protomer conformation and binding
state �19�.

Taking the coupling energy between neighboring subunits
to be −J /2 if they are in like conformations and +J /2 other-
wise gives

H = �
i=1

N

−
J

2
sisi+1 −

EA

2
Bi�c,si�si, �7�

where i is now the spatial index of the protomer. In the case
of a one-dimensional ring, which we shall examine here,
periodic boundary conditions are imposed.

The coupling favors the occurrence of domains in which
contiguous protomers have the same state. The protein ring
behaves as a switch when the probabilities of the two ex-
treme configurations, in which every protomer is active or all
are inactive, outweigh the likelihood of any other configura-
tion. For large rings, N�1, this occurs when

J 	 Jc = kBT ln N , �8�

because the occurrence of multiple domains, which is en-
tropically favored, is then suppressed by the energetic pen-
alty associated with the domain boundaries. It has also been
shown �8� that the coupling energy J must be larger than the

ligand binding energy EA if the ring is to adopt a coherent
state. Under these conditions, the ring spends the majority of
time as a single domain—all active or all inactive. It is for
this parameter constraint �large J�, for which the activity
�magnetization� as a function of concentration �field� ap-
proaches a step function, that we investigate the properties of
dynamic hysteresis.

III. ANALYTICAL SOLUTION

A. Simplified model

In order to calculate the dynamic hysteresis curve, a num-
ber of simplifications were made to the model specified by
Eq. �7�. The random ligand field was replaced by a mean
field h that acts independently of the protomer activity. The
region analyzed was around �iBi=0, where half of the pro-
tomers are liganded on average. In this case h is small and
the protein ring can switch in either direction. This region
has biological relevance since a switch can be effected by a
small change in the ligand concentration. It was also as-
sumed that h could be varied linearly around the regime of
interest, which corresponds to a linear variation of the con-
centration c if spin-field coupling is neglected.

In principle, the method used to find the hysteresis behav-
ior of the Ising ring could apply to any arbitrary variation of
field h in time. The rate of change of h=�iBi /N with time
can be calculated by solving the chemical kinetic equations
for the binding state of the protein ring given the variation of
ligand concentration in time. For a linear increase of ligand
concentration from below Kd �h
0� to above Kd �h	0�, a
linear increase in effective ligand field h is a good approxi-
mation.

These simplifications permit a mapping to the standard
one-dimensional, nearest-neighbor Ising magnet:

H = �
i=1

N

−
J

2
sisi+1 − h�t�si. �9�

B. Average time to switch

We consider the dynamics of switching in a field h�t� that
increases linearly in time at rate �. How does the magneti-
zation switch from 	s
=−1 to 	s
= +1? First a single spin
flips sign, nucleating a positively magnetized domain. Then
the boundaries of this domain will diffuse, until the domain
either vanishes or grows to encompass the whole ring. For
strong coupling satisfying Eq. �8� the probability that more
than two domains occur simultaneously is negligible �8�, so
the nucleation and growth of a single positively magnetized
domain is the dominant mechanism of switching.

We assume that each spin flips at a maximum rate � and
that the rate is slowed by a Boltzmann factor if a flip is
energetically unfavorable �the Metropolis method �20��. The
rate of nucleation of a positively magnetized domain is there-
fore

rnucl�t� = N�e−2J+2h�t�, h 	 0. �10�

The subsequent diffusion of the domain boundaries can be
analyzed as a random walk between partially absorbing bar-
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riers �21,22�. The domain grows by one site with probability
p and shrinks with probability q, where according to detailed
balance

q/p = e−2h�t�. �11�

Let gk be the probability that a domain which has attained
size k subsequently grows to size N, before it shrinks to size
zero. This probability satisfies the master equation

dgk

dt
= pgk+1 + qgk−1 − �p + q�gk. �12�

Consider the biologically relevant case where the time scale
for protein conformational change is much slower than the
rate of change of ligand binding �23�. Then, if a switch has
been initiated, the ligand binding state will be effectively
constant until the switch is complete, so dgk /dt�0.

Equation �12� therefore has the general solution

gk = A + B�q/p�k. �13�

The constants A and B are specified by the boundary condi-
tions, which are determined by the geometry of the ring.
When k=1, the domain can grow if either of two adjacent
spins flip sign, but can shrink only by the flipping of a single
spin. All three flipping events are energetically favorable if
h	0 and J	h, and so occur with equal probability. Thus

g1 =
2

3
g2. �14�

A similar condition at k=N−1 leads to

gN−1 =
1

1 + 2�q/p�
+

2

1 + 2�q/p�
gN−2. �15�

Together, Eqs. �13�–�15� yield the probability pgrow=g1 that a
newly nucleated domain grows to encompass the whole ring:

pgrow =
2�1 − �q/p��

3 − 2�q/p� + �q/p�N−2�1 − 2�q/p��
.

The instantaneous rate at which the Ising ring switches mag-
netization is then

rswitch�t� = rnucl�t�pgrow�t� . �16�

We consider a linearly increasing field h�t�=�t. For small h,
Eq. �16� can be expanded as

rswitch�t� � 2�e−2J�1 + N�t�, �t, N−1 � 1. �17�

The mean time 	tswitch
 at which a switch occurs can then be
found. Let P�t� be the probability that a switch has not oc-
curred at time t. Then

Ṗ = − rswitch�t�P → P = exp�−
 rswitch�t�dt� , �18�

	tswitch
 =

 tP�t�rswitch�t�dt .


 P�t�rswitch�t�dt

. �19�

Equations �17�–�19� give the average time to switch as

	tswitch
 =� 
�

2�N
erfc�� 1

2�N

�e�2�N
�−1

, �20�

with 
= �2�e−2J�−1. Thus the average field 	hswitch

=�	tswitch
 at which the switch occurs varies as ��, and so
does the hysteresis area.

This main scaling result is accompanied by a correction
that becomes important below a critical rate �c given by

�c �
1

2N

. �21�

For �
�c,

erfc���c

�
�e�c/� � �� , �22�

and there is therefore a linear scaling between 	hswitch
 and
�.

Because we have assumed strong coupling and Eq. �8�
specifies a lower limit on the value of J, we can rewrite Eq.
�21� as

�c 

�

N3 . �23�

Thus the way that 	hswitch
 scales with � depends strongly on
the size of the ring. Small rings respond linearly up to �c
��, while large rings respond with a square-root scaling law
at much lower rates of increase of field. Thus one prediction
of the model which could be tested experimentally is that
that the critical frequency at which the scaling behavior
changes is sensitive to the size of the protein ring.

Our calculation shows that the known result A��1/2 is
recovered in the thermodynamic limit N→�. What is new
and interesting is that a finite-size Ising ring displays a dif-
ferent scaling relation A�� for �
�c.

What is the physical mechanism that causes this change in
scaling? For �→0 there are many switch initiations at an
almost constant field. Therefore the switch probability is al-
most constant and one would expect the switching to follow
Poisson statistics. The average switch time is then constant,
giving a linear relationship between � and h=�	t
.

For larger � the situation is different. In this case, the
field increases appreciably between switch initiations. The
probability of a successful switch and the probability of a
switch initiation are no longer constant. This leads to non-
Poissonian switching and therefore a crossover in scaling
from h�� to h���. The crossover is modulated by N �Eq.
�17��, because there are N switch initiation attempts per time
step.
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C. Shape of the hysteresis curve

The shape of the hysteresis curve can also be calculated.
The average magnetization at time t is

	s�t�
 = − 1 + 2

0

t

P�t��rswitch�t��dt�, �24�

which, from Eq. �18�, gives

	s�t�
 = 1 − 2 exp�−
t�2 + �Nt�

2

� . �25�

The curve has a cusp at h�t�=0, due to the assumption that
the Ising ring is initially in the 	s
=−1 state and the field
starts at h=0. We can instead consider increasing the field
from an initially negative value, for which the approximation
of Eq. �17� gives a switch rate of zero. Then

	s�t�
 = − 1 + 2

−1/N�

t

P�t��rflip�t��dt�. �26�

The two hysteresis curves are shown in Fig. 3.

IV. NUMERICAL RESULTS

Previous numerical studies of dynamic hysteresis in the
one-dimensional Ising model �24� have confirmed the scaling
law 	hswitch
���, but did not report the different scaling in
slowly varying fields predicted by Eq. �20�. We therefore
carried out Monte Carlo simulations to test the predicted
correction to the scaling law. The simulations were per-
formed on an Ising ring of N=30 sites and J was varied in
the range �5–7�kBT, where switching should occur according
to Eq. �8�. The time step �t of the simulation corresponded
to the inverse flipping rate 1 /� of individual spins. Each
time step, N spins were selected at random and flipped ac-
cording to the Metropolis probability, and the field was in-
cremented by �h=��t. The initial condition was 	s
=−1
and h=0.

Figure 4 displays the average field at which the ring
switched as a function of the rate of increase of field. The
data accord well with the prediction for 	hswitch
 from Eq.
�20�, shown as a solid line. The predicted square-root scaling
in rapidly varying fields and linear scaling at slower rates of
change are both apparent.

We carefully checked that the assumption used in calcu-
lating the switching field was valid. For every simulation
run, the maximum number of domains during a switch was
recorded. The maximum number of domains was found to be
2 �with very rare exceptions�, implying that our assumption
of one-domain switching was reasonable.

The prediction for the switching field, Eq. �20�, was also
investigated for various N. N was varied from 8 to 1024,
ensuring J	 ln N, and the scaling prediction was found to
hold. For large N, the crossover frequency becomes very
small and the Metropolis method computationally expensive.
However, there is no reason that the crossover should not be
observed for any finite N.

The variance in the value of the field at which switching
takes place can also be analytically determined by calculat-
ing 	h2
=�2	t2
, as in Eq. �19�. Figure 5 indicates that the
variability in the simulated data agrees well with the pre-
dicted variance.

The expression for the hysteresis curve, Eq. �25�, can be
inverted to determine the average field at which the probabil-
ity that the ring has switched is one-half, so that 	s
=0. This
gives

hswitch��� =
1

N
�− 1 + �1 + 2 ln�2�N
�� . �27�

This prediction is compared with numerical results from the
simulation in Fig. 6.

The simulations show excellent agreement with our
analysis of switching in a finite, one-dimensional Ising mag-
net, which we have argued represents a simplified model of

FIG. 3. Hysteresis curve predicted by Eqs. �25� �solid line� and
�26� �dotted line�. All parameters were set equal to 1, so the axes are
arbitrary.

FIG. 4. Average field at which a switch occurs. Numerical data
for J /kBT=5 �squares�, 6 �diamonds�, and 7 �stars� are shown, to-
gether with the corresponding prediction of Eq. �20�. Other param-
eters: N=32, �=104 s−1. The scaling crossovers �Eq. �21�� are
shown as circles.

FIG. 5. Variability in the field at which a switch occurs �error
bars� for J=5kBT, together with the analytic prediction for the vari-
ance �dotted lines�. Other parameters as in Fig. 4.
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allosteric proteins. The question of how well the results ap-
ply to the complete model, in which random fields and spin-
field coupling are incorporated, is discussed below.

V. DISCUSSION

According to the canonical models of allostery �2,3�, the
principal advantage conferred by cooperative interactions
within a ringlike protein is a heightened sensitivity of re-
sponse to regulating ligand. When the coupling between pro-
tomers is high, J�Jc, a modest change in the ambient ligand
concentration is enough to switch the ring from the fully
inactive to the fully active state. Indeed, the sensitivity to a
change in concentration can be as much as N times greater
than that of a noncooperative system �2,8�. While the sharp-
ness of the response permits the activity to be switched on or
off when the regulating signal passes a threshold level, the
high sensitivity is potentially problematic. Might it not ren-
der the protein switch susceptible to fluctuations in regulator
concentration which inevitably occur, even when the mean
level of the regulator is not changing with time? The activity
curves predicted by the canonical models certainly suggest
that such fluctuations might cause unwanted switching be-
tween active and inactive states. In order to effect a switch
with the minimum of effort, it is advantageous to maintain
the ligand concentration close to Kd, so that a tiny change in
concentration can cause the ring to switch. However, if the
ligand concentration is close to Kd, small fluctuations rather
than signals may switch the protein ring.

Our analysis of switching dynamics indicates that dy-
namic hysteresis mitigates this problem. Cooperative protein
rings respond much more slowly to changing levels of ligand
than their noncooperative counterparts. The scaling behavior
of Eq. �20� indicates that a concentration fluctuation of fre-
quency � must last for a time of order �
 /�N before a
protein ring switches conformation. In effect, this means that
the protein ring is resilient to fluctuations whose frequency is
faster than �cutoff�N /
. To illustrate this point, the response
of an Ising ring to an oscillating field is shown in Fig. 7,
where it can be seen that high-frequency oscillations with
�	�cutoff have little effect. Because 
=exp�2J� /�, the cut-
off frequency becomes arbitrarily small as the strength of the
coupling is increased. Contrast this resilient behavior to the
more fragile response of a noncooperative system, where

fluctuations have negligible effect only if their time scale is
faster than the typical ligand detachment time �25�. Cooper-
ativity is thus a simple, robust way of filtering out noise in
the concentration of the regulator, which helps to explain
how proteins can work effectively in a noisy environment
�26,27�.

The C-ring in the bacterial flagellar motor provides a con-
crete example of this resilience to fluctuations. Studies of
individual motors �12� indicate that the C-ring switches from
a conformation that drives the flagellum counterclockwise to
one that drives it clockwise, over a narrow range of concen-
tration of the regulator CheY-p. In the middle of this range,
at �CheY-p�=3 �M, the motor switches stochastically be-
tween the two directionalities at a rate of about once per
second. The regulator CheY-p itself is produced by a signal
transduction pathway, in response to extracellular stimuli.
Because this pathway involves high amplification �28� and
bearing in mind that there are only a few thousand copies of
CheY-p in the cell �29�, the noise in the CheY-p level is
likely to be considerable. The time scale of these nonequi-
librium concentration fluctuations depends on the transduc-
tion machinery and thus cannot readily be predicted. We
therefore consider whether the switch is susceptible to the
fluctuations that are typically observed experimentally,
which occur on the time scale of milliseconds �12�.

We can estimate the cutoff frequency �cutoff�N /
 by not-
ing that the Ising model of allostery predicts that the stochas-
tic switching rate at �CheY-p�=3 �M is approximately 
−1

�8�. Thus we conclude that the C-ring is insensitive to fluc-
tuations whose frequency exceeds �cutoff�30 s−1, and it is
not much affected by the noise in the concentration of
CheY-p.

Our analysis implies that mathematical models in which
only average activity curves of cooperative proteins are used
�30,31� miss many of the important details of the dynamics
of switching between conformational states. Cooperative al-
losteric proteins might be even better at filtering fluctuations
than our analysis of the one-dimensional Ising model indi-
cates. The coupling between the protomer conformation and
the probability that ligand is bound results in a positive feed-
back. At the average switching concentration an inactive ring
has fewer ligands bound than an active ring. Consequently, a
switch from the inactive to the active state requires addi-
tional ligand to bind and therefore cannot occur rapidly

FIG. 6. Field at which 	s
=0, as a function of the rate of in-
crease of field. Numerical data for J /kBT=5 �squares�, 6 �dia-
monds�, and 7 �stars� are shown, together with the corresponding
analytic result from Eq. �27�. The fit is less good at large values of
� where the expansion of Eq. �17� breaks down.

FIG. 7. Filtering properties of an Ising ring in a sinusoidally
varying field. The frequency selectivity S, defined as the fraction of
field oscillations that cause a switch, is shown as a function of
oscillation frequency �. Parameters: N=30, J=7kBT.
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unless the ligand concentration is raised well beyond the
average switching concentration.

There is however a dilemma: Switches with J�Jc are
extremely robust with respect to to ligand fluctuations. How-
ever, they are also slow to switch in response to a change in
the mean ligand concentration: The switch time increases
exponentially with J. If a protein ring is to respond quickly
to changes in regulator level, the coupling energy must be

close to Jc. A smaller J necessarily makes the ring suscep-
tible to ligand fluctuations.

Our analysis suggests that protein rings are either de-
signed to be robust to fluctuations or to respond quickly to
changes. Since different biological functions call for differ-
ent computational requirements, we may expect to find fast
switches or robust switches, depending on which feature is
more important.
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